
 CS 302: Introduction to Programming

Lectures 2-3

CS302 Summer 2012 1

Review
● What is a computer?

● What is a computer program?

● Why do we have high-level programming
languages?

● How does a high-level program get translated
into machine-readable instructions?

CS302 Summer 2012 2

Review

What is an IDE?

What is the JVM?

What is a method? What is the only method we
will be dealing with for now?

CS302 Summer 2012 3

Review
Every Java statement must end with what?

What is a String?

How do you print out a String?

What do squiggly-braces do? (these things: { })

CS302 Summer 2012 4

CS302 Summer 2012 5

Errors
● 2 types:

● Compile-time

– Commonly syntax errors

– You will not be able to run your program

– Example: Forgetting a semicolon at the end of a
statement, having braces ({ }) that don't align, etc.

● Run-time

– Logic errors, exceptions

– You WILL be able to compile and run your program,
however it will not produce the results you expected

– Example: cheats/glitches in video games, BSOD

– Harder to catch

CS302 Summer 2012 6

Storing Data
Data stored in variables

Many types of variables in Java

Every variable has:

–Type

–Name

–Value

–Memory Location

Can think of a variable as a storage crate or a parking space in a
garage

2 steps to using variables

–Declaration

–Initialization

CS302 Summer 2012 7

Declaration and Initialization
Both steps must be done before a variable can
be used

Declaration must be done before initialization

Declaration:

–[type] variableName

Initialization:

–variableName = [initial value]

Can be combined into 1 step:

–[type] variableName = [initial value]

CS302 Summer 2012 8

Common Variable Types
Each variable type represents a different type of
data

int:

–Short for integer

–Stores whole numbers

–Ex. 7, 100, -5, 0

double:

–Stores floating-point numbers (decimals)

–Ex. 5.123, -800.2, 0.23456, 3.14159, 8.0

CS302 Summer 2012 9

Common Variable Types
Each variable type represents a different type of data

Strings:

–Stores sequences of characters

–Delimited by double quotes (“ “)

–Ex. “Hello, how are you?”, “blah blah blah!”

char:

–Stores a single character

–Delimited by single quotes (' ')

–Ex. 'a', 'z', '!', '1'

CS302 Summer 2012 10

Break 1

CS302 Summer 2012 11

Initialization and Declaration Revisited
int x;

–Declaration: [type] variableName;

x = 10;

–Initialization: variableName = [initial value]

int x = 10;

–Declaration and Initialization combined

What's wrong with:

–int x = 5.2;

CS302 Summer 2012 12

More Examples
Label each of the following as initialization or
declaration or combined:

–String name = “Bob Smith”;

–int myInt;

–double pi;

–char myChar = 'q';

–pi = 3.1415936;

–myInt = 0;

CS302 Summer 2012 13

Variable Names
Rules:

–Must start with a letter or underscore (_)

–Can include (but not start with) numbers

–Cannot use spaces or other symbols like ? or %

–Case sensitive (int x is different from int X)

–Cannot use reserved words (i.e. double double or int
public)

Conventions

–camelCase: start with lower case, first letter of each
additional word is capitalized

CS302 Summer 2012 14

Break 2

CS302 Summer 2012 15

Working with Variables
Assignment operator: =

–Means “sets”

–[destination] = [input value];

–int x = 5; → x is set to have the value 5

–x = 6; → x's value is now set to 6

Can assign variables to other variables

–int x = 5; → x is set to 5

–int y = x; → y is set to 5

–x = 6; → now x is 6, y is 5

CS302 Summer 2012 16

Displaying Variables
Use System.out.println([variableName]);

–No double quotes around variable name

int x = 5;

System.out.println(x); → prints out: 5

vs.

System.out.println(“x”); → prints out: x

CS302 Summer 2012 17

Displaying Variables and Strings
Use System.out.println(“[String]” + [variableName] +
“[String]”);

int x = 5;

System.out.println(“My number is: “ + x);

Output: My number is: 5

System.out.println(x + “ is my number”);

Output: 5 is my number

System.out.println(“My number is: “ + x + 2);

What is the output?

CS302 Summer 2012 18

Arithmetic
Addition: +, ++

Subtraction: -, --

Multiplication: *

Division: /

–Be careful with integer division

Expressions:

–variableName = [variable1] [operator] [variable2]

–int x = 2 + 2;

–double y = 4.5 / 3;

–int a = x * 2;

CS302 Summer 2012 19

Parenthesis
Method calls (i.e. System.out.println();)

Order of Operations

int x = 3 + 4 * 7; x is assigned 31

int x = (3 + 4) * 7; x is assigned 49

int x = (3 + 4) * 7 – 2; x is assigned 47

int x = ((3 + 4) * 7) – 2; x is assigned 47

Can mix

System.out.println((3 + 4) * 7);

Must be balanced

System.out.println((3 + 4 * 7);

CS302 Summer 2012 20

Mixing Integer and Floating-
Point Operations
Fine as long as we are assigning back to a

double

int x = 4, y = 2;

double z = 5.5;

z = (z + x) * y;

z is assigned (5.5 + 4) * 2 = 19;

Could we have done x = (z + x) * y; instead?

CS302 Summer 2012 21

Integer Division

● Deceptively simple

● Do division and cut off remainder (DO NOT

ROUND)

int x = 2 / 2; x is assigned 1

x = 5 / 2; x is assigned 2

x = 1 / 2; x is assigned 0

CS302 Summer 2012 22

Modulus Operator - %
● Mostly used with ints though it can be used with

doubles

● Gets the remainder after integer division

int x = 2 % 2;

● x is assigned 0 because 2 / 2 = 1 remainder 0

x = 5 % 2;

● x is assigned 1 because 5 / 2 = 2 remainder 1

x = 1 % 2;

● x is assigned 1 because 1 / 2 = 0 remainder 1

CS302 Summer 2012 23

Powers and Roots
● No symbol for powers or square roots on a keyboard*

● Must call pre-built methods in the Math library

● Math.pow([base], [power]);

● double d = Math.pow(2, 3); d is assigned 8 because 2^3
is 8

● d = Math.pow(3, 2); d is assigned 9 because 3^2 is 9

● Math.sqrt([number]);

● d = Math.sqrt(4);

● d = Math.sqrt(-1);

● These methods return doubles

*Often times the ^ will be used for powers e.g. 2^3 = 8
CS302 Summer 2012 24

Method Calling Conventions

● [identifier].[methodName]([arguments])

● System.out.println("Hello");

● Math.pow(2, 4);

● System.out.println(x);

● Multiple arguments always separated by

commas (,)

● Identifiers can be class or variable names

CS302 Summer 2012 25

Break 3

● Write a program that stores values for a, b,

and c and solves the quadratic equation

CS302 Summer 2012 26

Comments
● Enables writing notes in your code

● Compiler ignores

● // - single line

● /*...*/ - multi-line

● Javadoc - /**...*/ - multi-line and converts to html

● Best practice – USE these

● Difficult to over-comment

● See style pages on website after it is created

CS302 Summer 2012 27

Constants
● What if we have a variable we know will never

change? (Gravitational Constant = ?)

● Could just write in the literal value every time we
need it

● Better practice – use constants

● Specified by the "final" keyword

● final double MILES_TO_KM = 1.609344;

● Naming conventions – ALL_UPPER_CASE

● Avoid magic numbers – use comments

CS302 Summer 2012 28

Input
● Prompt – when the computer asks the user for input and waits

● Using the Scanner object:

import java.util.Scanner; //above the main method

...

//in the main method

Scanner in = new Scanner(System.in);

System.out.println(“Enter an int:”);

int x = in.nextInt(); //x gets the value of whatever the user enters

CS302 Summer 2012 29

Common Scanner Methods
● next()

● Read in up to a space or newline

● Returns a String

● nextLine()

● Reads in an entire line

● Returns a String

● nextInt()

● Reads in and returns an int

● nextDouble()

● Reads in and returns a double

CS302 Summer 2012 30

Break 4

● Write a program that:

● Outputs: What is your name?

● Waits for the user to enter their name

● Outputs: I'm sorry [name], I'm afraid I can't do

that...

CS302 Summer 2012 31

Primitive vs Reference Types
● Primitives

● int, double, char, boolean, byte, long, short, float

● Reference

● String and other user-defined types

● Primitives hold a literal value

● Can't call methods on them

● References hold a memory location where that
value is stored

● Can often call methods on them

CS302 Summer 2012 32

Casting
● What if I wanted an int back from a Math.pow or

Math.sqrt call?

● int x = (int) Math.pow(2,3);

● x is assigned 8

● How is this different than double y = Math.pow(2,3)?

● Be careful – lose all fractional part (DOES NOT ROUND)

double y = Math.sqrt(5);

int x = (int) y;

x is assigned 2

CS302 Summer 2012 33

Converting Strings to Numbers

● String int

● Integer.parseInt([String])

● String aNumber = "5";

● int x = Integer.parseInt(aNumber);

● String double

● Double.parseDouble([String])

● double y = Double.parseDouble("2.2");

CS302 Summer 2012 34

Print vs PrintLine
● System.out.print([stuff to print out]);

● Prints String with no newline on the end

● System.out.println([stuff to print out]);

● Prints String with newline added on the end

System.out.print("This is a print");

System.out.println("This is a println");

System.out.println("Another println");

This is a printThis is a println

Another println

CS302 Summer 2012 35

Practice

● Write a program to compute the volume and

surface area of a cylinder

● Prompt the user for height and diameter

● V = pi * r2 * height

● SA = 2 * pi * r * height

● Print out the volume and surface area

CS302 Summer 2012 36

Using Objects
● 3 Steps

● Import the package

– import java.util.Scanner;

– import java.util.Random;

● Instantiate a new Object

– Scanner in = new Scanner(System.in);

– Random randGenerator = new Random();

● Call methods on the Object

– in.next();

– randGenerator.nextInt();

CS302 Summer 2012 37

How to Generate a Random
Number?

CS302 Summer 2012 38

The Random Object

● What is a seed?

● A starting value for the random number generator

that enables it to generate the same sequence of

numbers each time

● If no seed is passed, Java uses the system clock

as a seed value meaning every time the program

is run it starts with a different seed value (since the

time is different) which gives appearance of

randomness

CS302 Summer 2012 39

The Random Object
● 2 ways to instantiate

● Random randGenerator = new Random();

● Random randGenerator = new Random(seed);

– Seed is of type long

● What is a long?

● Another primitive type – looks like an int but can hold
more values

● ints = -2,147,483,648 – 2,147,483,647

● Longs = -9,223,372,036,854,775,808 –
9,223,372,036,854,775,807

● Java can automatically convert ints to longs for you

CS302 Summer 2012 40

Working with the Random Object

● Its an object -> call methods!

Random rand = new Random();

int x = rand.nextInt(); //x is any int value

int y = rand.nextInt(10); //y is 0-9

//How to get a number 1-10?

CS302 Summer 2012 41

Break 5

● Write the code to simulate a D20 (20-sided

dice)

● Input: Nothing (or a seed if you want...)

● Output: Random # from 1 – 20 inclusive

CS302 Summer 2012 42

